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Abstract
In this study, molecular dynamics simulations are carried out using a modified
many-body Morse potential function in the framework of the embedded-atom
method (EAM). Pressure–temperature (P–T ) diagrams are determined for Rh
and Sr. For the metals the bulk moduli are calculated from the pressure versus
volume curves, and specific heats are calculated from the enthalpy versus
temperature curves. The temperature and pressure dependence of the elastic
constants and bulk moduli are also calculated for Rh and Sr. The obtained
results are in good agreement with the available experimental data.

1. Introduction

Computer simulations on various metallic systems usually use simple pairwise potentials.
However, the interactions in real metallic materials cannot be represented only by simple
pairwise interactions. A pure pairwise potential model gives the Cauchy relation, C12 = C44,
between the elastic constants, which is not the case in real metals. Therefore, many-body
interactions should be taken into account in any studies of metals and metal alloys.

It is very important to calculate the phase diagrams of metallic systems and their alloys
in order to achieve technological improvements. The phase diagrams are still obtained by
using experimental techniques because there are no available methods for entirely theoretical
predictions of all of the phase diagrams of any pure metal. Therefore, in the calculations
of the phase diagrams some expressions have been formed by using theoretical or semi-
empirical approach, and their validity has been investigated in a selected portion of the phase
diagrams. The expressions suggested in semi-empirical approaches generally contain some
factors depending on temperature and pressure. Therefore, the calculated phase region is
restricted by experimental limits. Nowadays, however, free-energy concepts, such as Gibbs
and Helmholtz, have been widely used to calculate the macroscopic phase diagrams [1, 2] in
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which thermodynamic parameters are dominant. In the microscopic scale, their calculations
require some vibrational properties which can be derived from elastic constants of the material.
So, the correct calculations of the elastic constants are important as well as the calculations of
phase diagrams.

Molecular dynamics (MD) simulations can be utilized to compute the thermodynamic
parameters and the results of the external effects, such as temperature and pressure or stress
acting on a physical system [3, 4]. In the MD simulations, the interatomic interactions are
modelled with a suitable mathematical function, and its gradient gives the forces between
atoms. Hence, Newton’s equations of motion of the system are solved numerically and
the system is forced to be in a state of minimum energy, an equilibrium point of its phase
space. Although many properties of the system, such as enthalpy, cohesive energy and internal
pressure, have been directly calculated in MD simulations, the entropy which is required
for the free-energy calculations has not been directly obtained, but it is possible to obtain
it by some approaches involving harmonic or anharmonic assumptions. There are some
investigations related to these approaches: the calculation of the free energy between face-
centred cubic (FCC) and hexagonal close-packed (HCP) structures [5, 6], the investigation
of the first-order phase transition [7], the dependence of the phase diagram on the range of
attractive intermolecular forces [8], the investigation of harmonic lattice dynamics and entropy
calculations in metals and alloys [9], the calculation of the P–T diagram of hafnium [10], etc.
Recently, the P–T diagrams for Ni and Al have been calculated by Gurler and Ozgen [11] by
using MD simulations based on the Sutton–Chen version of the EAM [12].

The reliability of the results obtained from MD simulations depends on the suitable
modelling of the interatomic interactions. Interatomic interactions are usually results of fits
to various experimental data at 0 K or room temperature. However, it is not clear whether
simulations performed at other temperatures still reproduce the experimental data accurately.
Comparing theoretical and experimental elastic constants and other properties at various
temperatures can serve as a measure of reliability and usefulness of potential models [13, 14].
In fact, there are several potential energy functions that can be used for metallic systems.
However, the EAM, originally developed by Daw and Baskes [15, 16] to model the interatomic
interactions of FCC metals, has been successfully used to compute the properties of metallic
systems such as bulk, surface and interface problems. The reliability of the EAM in the bulk
and its simple form for use in computer simulations make it attractive.

In this study, in order to model Rh and Sr metallic systems we have used the EAM
functions modified by two of us (Ciftci and Colakoglu [17]), developed first by Cai [18]. In this
work, we have carried out MD simulations to obtain the P–V diagrams at 300 K and the P–T
diagrams of the systems for an ideal FCC lattice with 1372 atoms, by using an anisotropic MD
scheme. In addition, the bulk modulus and specific heat of the system in the solid phase are
determined, and result-driven simulations are interpreted by comparing with the values in the
literature. We have also calculated the temperature dependences of the elastic constants and
bulk moduli for Rh and Sr. The results obtained are compared with the values in the literature.

2. Potential energy function

According to the embedded-atom method, the cohesive energy of an assembly of N atoms is
given by [15, 16]

Etot =
∑

i

Fi (ρi ) +
∑

i> j

φ(ri j) (1)

ρi =
∑

j ( �=i)

f (ri j), (2)

2
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Table 1. The experimental properties and potential parameters of Rh and Sr. The experimental
properties: lattice parameters (a0) at room temperature is from [20], bulk modulus (Bm) and elastic
constants (Cij ) given at zero temperature are from [21], the vacancy formation energy (E f

v) is
from [22], the melting temperature (Tm) is from [23], and the specific heat C p is from [24]. The
arbitrary constants (m and n), α, β, D1 and D2 are the calculated potential parameters.

a0

(Å)
r0

(Å)
Ec

(eV)
E f

v
(eV)

Bm

(GPa)
C11

(GPa)
C12

(GPa)
C44

(GPa)
Tm

(K)
C p

(J mol−1 K−1)

Rh 3.8044 2.6901 5.75 1.90 268.63 422.0 192.0 194.0 2237.0 25.0
Sr 6.0849 4.3027 1.72 0.66 11.6 15.3 10.3 9.9 1042.0 26.0

m n α (Å
−1

) β D1 (eV) D2 (eV)

Rh 5.0 0.2 1.5374 4.1584 0.4931 3.6119
Sr 3.0 0.5 1.2737 4.8076 0.1039 1.6142

where Etot is the total cohesive energy, ρi is the host electron density at the location of atom i
due to all other atoms, f (ri j) is the electronic density function of an atom, ri j is the distance
between atoms i and j , Fi (ρi ) is the embedding energy to embed atom i in an electron density
ρi , and φ(ri j ) is the pairwise potential energy function between atoms i and j .

In this work, we used a modified pairwise potential function in the framework of the Cai
version [18] of the EAM. The present form of the potential makes it more flexible owing to
the constants, m and n, in the multiplier forms. Such a factor included in the classical Morse
function is treated by Verma and Rathore [19] to compute the phonon frequencies of Th, based
on the central pair potential model. The modified parts of the potential and the other terms are
as follows:

f (r) = fee−α(r−re), (3)

F(ρ) = −F0

[
1 − ln

(
ρ

ρe

)n](
ρ

ρe

)n

+ D2

(
ρ

ρe

)
, (4)

φ(r) = D1

(m − 1)

[
e−mβ( r

re
−1)

(β r
re

)n
−

(
β

r

re

)n

e−β( r
re

−1)

]
, (5)

where α, β , D1 and D2 are fitting parameters that are determined by the lattice parameter a0,
the cohesive energy Ec, the vacancy formation energy E f

v, and the elastic constants Ci j . Here
ρe is the host electron density at the equilibrium state, re is the nearest-neighbour equilibrium
distance, and F0 = Ec − E f

v . In this potential model, there are four parameters: β and D1 are
from the two-body term, and m and n are adjustable selected constants. The fitting parameters
are determined by minimizing the value of W = ∑ [(X cal − X exp)/X exp]2. Here X represents
the calculated and experimental values of the quantities taken into account in the fitting process.
Hence, the potential functions can be fitted very well to the experimental properties of the
matter, such as the vacancy formation energy, cohesive energy, elastic constants, and lattice
constant (a0) in an equilibrium state. In the fitting process here, the cutoff distance is taken to
be rcut = 1.65a0. In equation (3), the fe parameter is selected as unity for monatomic systems
because it is used for alloy modelling as an adjustable parameter to constitute suitable electron
density. For the selected values of the constants m and n, the computed potential parameters
and experimental input data for Rh and Sr are given in table 1.

The cohesive energy changes with the variation of lattice constants of Rh and Sr calculated
from equation (1) and from the general expression of the cohesive energy of metals proposed

3



J. Phys.: Condens. Matter 19 (2007) 326204 Y O Ciftci et al

Figure 1. Rose and EAM energies versus lattice constant for (a) Rh and (b) Sr.

by Rose et al [25] are compared in figure 1. The Rose energy is also called the generalized
equation of state of metals and is written as

ER(a∗) = −E0(1 + a∗)e−a∗
(6)

a∗ =
(

a

a0
− 1

) /(
EC

9Bm�

)1/2

, (7)

where E0 is a constant to be taken as an equilibrium cohesive energy of solid, Bm is the bulk
modulus, and � is the atomic volume in equilibrium. It has been determined that the cohesive
energies calculated from equation (1) with the parameter given in table 1 for Rh and Sr are in
good agreement with Rose energies in equilibrium.

3. Molecular dynamics simulation

The Lagrange function for an anisotropic box containing N particles, i.e. an MD cell, given by
Parrinello and Rahman, is [26, 27]

LPR = 1
2

N∑

i=1

mi (ṡt
i Gṡi) − Etot + 1

2 M Tr(ḣtḣ) − PextV , (8)

where mi is the mass of particle i , si is the scaled coordinate of atom i and is represented by a
column vector whose elements are between zero and unity, h = (a, b, c); a, b and c vectors are
MD cell axes, the metric tensor G is given by matrix product ht h, M is an arbitrary constant
which represents the mass of the computational box, Pext is the external pressure applied on

4
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the cell, and V is the volume of the MD cell and is obtained from det(h). Thus, the square of
the distance between particles i and j is described by r 2

i j = st
i j Gsi j . The classical equations of

motion of the system obtained from equation (1) become

s̈i = − 1

mi
Fi − G−1Ġṡi (9)

ḧ = M−1(Π − IPext)σ , (10)

where σ = (b × c, c × a, a × b) = V (ht)−1 and the microscopic stress tensor, Π, is a dyadic
given as follows:

Π = V −1

[
N∑

i=1

mi vi vi −
N∑

i=1

N∑

j>i

Fi j

ri j
ri ri

]
. (11)

Also, the force on an atom i in the system is calculated from the following equation:

Fi = −∇s Ei = −
N∑

j=1
j �=i

[
F ′

i ρ
′
j + F ′

jρ
′
i + φ′

i j

] ŝi j

ri j
, (12)

where the primes denote the first derivatives of the functions with respect to their arguments.
In all of the simulation studies, the equations of motion given in equations (9) and (10)

were numerically solved by using the velocity version of the Verlet algorithm [28]. The size
of the integration step was chosen to be 1.97 × 10−15 s for Rh and 6.35 × 10−15 s for Sr.
Initial structures of the systems were constructed on a lattice with 1372 atoms and an FCC unit
cell. It has been observed that, with these initial conditions, the systems were equilibrated in
5000 integration steps. Time averages of the thermodynamic properties of the system in each
simulation run were determined by using 30 000 integration steps following the equilibration
of the system. The structures of the system in the solid phase were examined by using the
radial distribution function, g(r). Melting temperatures were determined from the plots of the
cohesive energy versus temperature. It is possible to classify our simulation runs in two groups
as thermal and pressure applications. In the thermal applications, the temperature of the system
under zero pressure is raised from 100 to 4600 K for Rh (and 100 to 2900 K for Sr) with an
increment of 100 K in each run of 35 000 integration step; but near the melting temperatures,
the increment is reduced to 20 K. The pressure applications are also implemented by repeating
the thermal applications under pressure values of 0.5, 1.0, 1.5, 2.5, 5.0, 7.5, 10.0, 15.0 and
20.0 GPa. In each run, the simulation was restarted with different pressure to avoid algorithmic
errors.

The temperature dependence of the elastic constants and the bulk moduli are calculated by
following the procedure given by Karimi et al [13]. The fluctuation formula for the calculation
of the elastic constants in the EhN (E is the total energy, h is a matrix representing the volume
and shape of the computational cell and N is total number of particles) ensemble was derived
in [29] as follows:

Ci jkm = − V0

kBT
(〈Pi j Pkm〉 − 〈Pi j 〉〈Pkm 〉) + 2NkBT

V0
(δikδ jm + δimδ jk)

+ 〈B1i jkm〉 + 〈B2i jkm〉 + 〈B3i jkm〉. (13)

Here, Pi j is the microscopic stress tensor for the EAM functions which can be determined
from the virial theorem (see [13]). The first term on the right-hand side in equation (13) is
called the fluctuation term, the second the temperature correction and the last three are called
the Born terms. Pair terms in the EAM function are included in B1 and B2 while many-body
contributions are in B3. The details of the formulations for the fluctuation terms and Born terms

5
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Figure 2. P–V diagrams for (a) Rh and (b) Sr.

used in the calculations are given in [13, 29]. We have used 30 000 integration steps (time after
equilibration) to calculate the elastic constants and bulk moduli in the 0–1000 K temperature
range, under zero pressure.

4. Results and discussion

We will classify our results into eight different categories:

(i) the P–V diagram has been analysed to determine the bulk modulus under zero pressure,
(ii) the changes of the lattice constant with temperature have been investigated to determine

the coefficient of linear thermal expansion,
(iii) the specific heat has been determined by using the changes of the enthalpy with

temperature,
(iv) the radial distribution function has been obtained in solid and liquid phases for the

estimation of structural properties,
(v) the P–T graph, which is plotted by using the variation in melting temperatures with

increasing pressure acted on the system, has been examined,
(vi) the variation of the elastic constants and bulk moduli with temperature are, also,

determined,
(vii) the pressure dependence of V/V0 has been obtained, and finally

(viii) the pressure dependence of the elastic constants has been investigated.

The change of the atomic volume with the gradually increasing pressure, which acts on the
system at 300 K, is given in figures 2(a) and (b) for Rh and Sr. The bulk moduli calculated from

6
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Figure 3. Variation of the enthalpy with temperature for (a) Rh and (b) Sr.

the P–V diagram shown in figure 2 are obtained as BmRh = 258.16 and BmSr = 12.11 GPa
for Rh and Sr, respectively. The calculated bulk moduli are in good agreement with their
experimental values (see table 1) within an error of ∼4.05% for Rh and ∼3.78% for Sr. The
bulk modulus is a parameter which is used directly for determining the parameters of the
potential energy functions. Therefore, it is an expected result that the values of the calculated
bulk modulus have a minor error less then 4%. The errors on the values of the calculated bulk
modulus are also maximum with respect to those of the others, apart from the calculated melting
temperature, which is not included in the fitting process of the parameters of the potential
energy functions.

The variations of enthalpy with temperature under zero pressure for solid Rh and Sr are
given in figures 3(a) and (b), respectively, and these graphs are used to compute specific heats
under the constant pressure. The calculated values of specific heats over 0–300 K are found to
be CpRh = 26.13 and CpSr = 26.66 J mol−1 K−1 for Rh and Sr, respectively. Considering the
experimental data in table 1, it can be seen that the specific heats are calculated with an error of
4.3%, and 2.5% for Rh and Sr, respectively. Specific heats are not directly used experimental
parameters in the fitting process of the parameters of the potential energy functions. They
have also not been calculated directly during the simulations, using some technique including
a thermal fluctuation formula, but calculated from thermodynamic considerations with the
ratio �H/�T . Therefore, the fact that the specific heats are calculated with an error less
that 4.5% is an important finding, which shows the validity of our potential function and its
parameters.

There are several methods for determining the melting temperature of a crystal. In one
of these methods, as done here, MD simulations are performed on the system at various

7
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Figure 4. Changes of the cohesive energy as a function of temperature at different pressure for
(a) Rh and (b) Sr. The symbols, �, �, •, ×, ∗, ◦, + represent the pressure values of 0.0, 0.5, 1.0,
1.5, 2.5, 5.0, 7.5 GPa, respectively.

temperatures, and the cohesive energy is plotted as a function of temperature. At the melting
point, a discontinuity occurs in the cohesive energy. The other way of determining the melting
temperature is to plot a caloric curve, which is the change of the total energy of crystal versus
kinetic energy [30]. Indeed, the melting temperature of a metal is obtained as the temperature
at which the Gibbs free energy of the solid and liquid phases becomes equal. The entropy is
required to compute the free energy, but it cannot be directly calculated from MD simulations.
For this reason, some other approaches are required [3]. Another way of determining the
melting temperature is to simulate the solid–liquid interface [13]. In this way, the temperature
for which the interface velocity goes to zero is determined as the melting temperature and it is
reproduced more correctly than by way of the caloric curve. Karimi et al [13] estimated the
melting temperature for Ni as 1630 ± 50 K within an error of −5.6%, using the solid–liquid
interface technique.

In the present work, the variations of cohesive energy with temperature for different
pressures acting on the system are given in figures 4(a) and (b) for Rh and Sr. We have
computed the melting temperatures under zero pressure as 2380 ± 20 and 700 ± 20 K for
Rh and Sr, respectively. When these values are compared with the experimental ones of 2237
and 1042 K given in table 1, the error for Rh becomes 6.39% and the error for Sr becomes
−32.82%. From figure 1(a), it can be seen that the calculated cohesive energy values from
our model are lower than the values of the Rose energy. According to the assumption that the
Rose energies are correct, our model for Rh produces a deeper potential well for atoms. So, it
can be interpreted that the error in the melting temperature for Rh results from the deepness of

8
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Figure 5. The radial distribution curves in solid and liquid phases for (a) Rh and (b) Sr.

the potential well, which depends mainly on the energy parameters D1 and D2 of the potential
functions. However, as seen from figure 1(b) for Sr, our EAM version produces a shallow well
for atoms. In this way, the calculated melting temperature of Sr is lower than the experimental
one.

The radial distribution function is used to investigate the structural properties of the solid
and liquid phases. The plot of radial distribution functions acquired in solid and liquid phases
for Rh and Sr are given in figure 5. The first peak location of the radial distribution curves
represents the distance of the nearest-neighbour atoms, r0. The second peak location denotes
the distances of next-nearest neighbours, a0. These distances are found to be 2.699 and 3.816 Å,
respectively for Rh. By comparing with experimental data given in table 1, the calculated errors
in a0 and r0 are 0.3% for Rh. These distances are 4.297 and 6.164 Å, respectively, for Sr. By
comparing with experimental data given in table 1, the present error in r0 is 0.1% and it is
1.3% in a0. So, the present errors can be omitted since the parameters of the potential energy
function were fitted to the crystal properties in the static case. Since the peak locations shown
in figures 5(a) and (b) satisfy certain peak locations at

√
2,

√
3,

√
4,

√
5, etc times r0 in an ideal

FCC unit cell, the metals have an FCC unit cell under zero pressure.
The P–T diagrams plotted by using the melting temperatures under different pressures

are given in figures 6(a) and (b) for Rh and Sr, respectively. The binding energies of the
metals can be reduced by increasing temperature. At high temperatures near the melting
point, it is generally expected that the Gibbs free energy is lowered by a phase transition such
as the martensitic type from one structure to another one which has lower energy at higher

9
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Figure 6. P–T diagrams for (a) Rh and (b) Sr.

Table 2. Elastic constants and bulk modulus of Rh calculated at 0, 300, 500, 700 and 1000 K as
obtained from NPT MD simulation after 30 000 steps. For each temperature, the first number in the
first row gives our MD result and the first number in the second row has been taken from [31]; for
0 K the second number (in parentheses) in the first row is the experimental value and the second
number (in parentheses) in the second row is our static calculation result.

T (K) C11 (GPa) C12 (GPa) C44 (GPa) B (GPa)

0 343.94 (422.10)
322.30 (363.75)

192.17 (192.0)
232.02 (202.31)

187.81 (194.00)
131.95 (197.96)

242.76 (268.63)

300 314.48
322.30 ± 0.66

175.95
223.02 ± 0.90

169.53
131.95 ± 0.69

232.58
256.11 ± 0.85

500 293.15
312.03 ± 0.69

163.76
216.89 ± 0.44

158.53
124.72 ± 0.15

225.58
248.60 ± 0.52

700 269.92
298.92 ± 0.77

150.25
210.23 ± 0.78

148.51
117.44 ± 0.14

218.28
239.79 ± 0.78

1000 237.63
279.36 ± 1.12

133.51
199.07 ± 0.71

130.92
108.16 ± 1.07

206.83
225.83 ± 0.84

temperatures, like a body-centred cubic (BCC) lattice. However, we have not observed this
type of phase transition for either Rh or Sr.

We calculated the temperature dependence of the elastic constants and bulk moduli of Rh
and Sr by using MD simulations with 30 000 steps for each temperature considered in the range
0–1000 K. The results are summarized in tables 2 and 3 for Rh and Sr, respectively. For Rh
the MD simulation results for the lattice parameter and cohesive energy at 0 K are 3.811 Å and

10
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Figure 7. Variation of V/V0 as a function of pressure for (a) Rh and (b) Sr.

Table 3. Elastic constants and bulk modulus of Sr calculated at 0, 300, 500, 700 and 1000 K as
obtained from NPT MD simulation after 30 000 steps. For 0 K, the first number in the first row
shows our MD results, and the second number (in parentheses) in the first row is the experimental
values, while the numbers in the second row are the static calculation results.

T (K) C11 (GPa) C12 (GPa) C44 (GPa) B (GPa)

0 15.88 (15.30)
15.58

10.82 (10.36)
10.66

8.04 (9.90)
7.89

12.509 (11.6)

300 12.48 8.88 6.13 11.29
500 9.85 7.42 4.65 10.41
700 6.42 5.33 3.13 9.34

1000 3.62 3.61 0.35 7.02

5.790 eV, respectively. Simulation results show approximately 0.18% and 0.69% deviation
from the experimental values of lattice parameter and cohesive energy, respectively. For Sr
the same MD simulation results at 0 K are 6.078 Å and 1.711 eV, respectively. Simulation
results for Sr show approximately 0.1% and 0.5% deviation from the experimental values of
lattice parameter and cohesive energy, respectively. In these calculations the lattice parameters
at 300 K are used as a reference. The errors in the cohesive energies and the lattice parameters
have been found to be within the expected limits because their experimental values were utilized
in the fitting process of the potential energy functions. Nonetheless, it is considered that
the accuracy of these results necessitates not only having confidence in the potential energy
functions and its parameters but also in the MD calculations.

11
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Figure 8. Variations of elastic constants with pressure for (a) Rh and (b) Sr.

The elastic constant values in tables 2 and 3 are closer to the experimental values,
especially at 0 K, than those of [31].

We also calculated V/V0 as a function of pressure (0–25 GPa) at 300 K for Rh and of
pressure (0–2 GPa) at 295 K for Sr and added experimental points for comparing with MD
results. The plots of V/V0 versus pressure for the metals are given in figures 7(a) and (b). Here
V0 is the volume under the zero pressure. The MD results are in very good agreement with the
experimental data and the curve calculated by Baria and Jani using pseudopotential theory [32].

Finally the variation of elastic constants with pressure for Rh and Sr is given in figure 8.
Our calculated elastic constants are everywhere positive and smoothly increasing functions of
pressure. This implies that Sr and Rh are mechanically stable crystals over the entire pressure
range examined.

5. Conclusion

It has been found that the present version of the EAM with a recently developed potential
function, which makes it more flexible owing to the parameter n, represents quite well
the interactions between the atoms to simulate the studied monatomic systems. Since the
parameterization technique of our potential is based on the bulk properties of metals at 0 K,
it can in particular describe the temperature-dependent behaviours of our crystals qualitatively.

As a whole, the present model well describes the many physical properties, and our results
are in reasonable agreement with the corresponding experimental findings, and provide another
measure of the quantitative limitations of the EAM for bulk metals.

12
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